Kinetic Resolution of Aliphatic 1,2-Diols by a Lipase-Catalyzed Sequential Acetylation¹

Fritz Theil*, Judith Weidner, Sibylle Ballschuh, Annamarie Kunath, and Hans Schick

Centre of Selective Organic Synthesis, Rudower Chaussee 5, D(O)-1199 Berlin-Adlershof, Germany

Abstract: The kinetic resolution of 13 racemic aliphatic 1,2-diols (*rac-la-m*) by means of a lipase-catalyzed sequential acetylation was investigated. The enantioselectivity of the 3-aryloxy-propane-1,2-diols *rac-la-k* depends on the substitution pattern at the aryl ring.

Homochiral 1,2-diols are of increasing interest as synthetic intermediates for different classes of substances.² Thus, these compounds play an important role as target molecules in asymmetric synthesis with enzymes as chiral catalysts. It is known that lipases catalyze the regioselective acylation of aliphatic 1,2-diols at the primary hydroxy group³ with low enantioselectivity.⁴ To overcome this problem it is necessary to protect the primary hydroxy group with a bulky group.⁵

3-Aryloxy-propane-1,2-diols are building blocks for ß-blockers.⁶ Derived⁷ and related⁸ compounds are used as substrates in bioconversions. The increasing number of papers in this field prompted us to publish our recent results in a preliminary manner.

It was our aim to use diols, which do not require a manipulation at the primary hydroxy group, as substrates in a lipase-catalyzed sequential acetylation.⁹ We could demonstrate the amplification of the enantioselectivity by application of this concept in the case of racemic *Mephenesin^R* (*rac-1b*) as substrate.^{4b} This reaction showed a moderate enantioselectivity (E = 27).¹⁰ In order to obtain information about the influence of the side chain of these diols on the enantioselectivity of the lipase-catalyzed sequential acetylation, the 2-methylphenoxy residue was replaced by other substituted aryloxy groups and by one alkyl, as well as one aryl substituent in the 2-position of the diol (Scheme 1).

These lipase-catalyzed transesterifications were carried out as previously described.^{4b} The results of the kinetic resolutions are summarized in Table 1. In the presence of lipase Amano PS, the (S)-enantiomers of **la-k** are converted at a lower rate into the primary (R)-monoacetates **2a-k**. The corresponding (R)-enantiomers of **la-k** are converted at a higher rate into the (S)-diacetates **3a-k**. In general, the derivatives with substituents in the 4-position of the aromatic ring show significantly higher enantioselectivities than those with substituents in the 2-position. Such a clear relationship could not be observed for the compounds substituted in the 3-position of the aromatic ring. Furthermore, a substituent in the 4-position seems to be a

prerequisite for a high enantioselectivity of the resolution procedure (Table 1). The observed selectivities correspond with Kazlauskas' rule.¹¹

Acknowledgements: For a generous gift of lipase PS we would like to thank the Amano Pharmaceutical Co. This work was supported by the Fonds der Chemischen Industrie.

Substrate	R	e.e. of (R)-2 (%)	e.e. of (S)-3 (%)	Conv.	Е
1 a	Ph-OCH ₂	85	79	0.52	23
1b	2-Me-C6H4-OCH2	9 3	80	0.54	27
1c	3-Me-C ₆ H ₄ -OCH ₂	66	87	0.43	28
1d	4-Me-C ₆ H ₄ -OCH ₂	66	93	0.42	55
1e	2-OMe-C6H4-OCH	2 63	87	0.42	27
lf	3-OMe-C ₆ H ₄ -OCH ₂	91	95	0.49	>100
1g	4-OMe-C ₆ H ₄ -OCH ₂	96	94	0.51	>100
1h	2-Cl-C ₆ H ₄ -OCH ₂	55	88	0.38	27
1i	3-Cl-C6H4-OCH2	86	92	0.48	67
1j	4-Cl-C ₆ H ₄ -OCH ₂	94	92	0.50	85
1k	1-naphthyl-OCH ₂	42	78	0.35	12
11	Ph	66	9 3	0.42	55
1mª	Et	49 ^b	94°	0.34	53

Table 1: Kinetic Resolution of the Diols rac-1a - m

a)Pancreatin was used as lipase. b)It corresponds to (S)-2. c) It corresponds to (R)-3.

References

- Enzymes in Organic Synthesis Part 14. Part 13.: Schick, H.; Schrötter, E.; Szymanowski, M.; Knoll, A. J. Prakt. Chem./Chemiker-Ztg., submitted for publication.
- 2. Parida, S.; Dordick, J. S. J. Am. Chem. Soc. 1991, 113, 2253 and references cited therein.
- 3. Cesti, P.; Zaks, A.; Klibanov, A. M. Appl. Biochem. Biotechnol. 1985, 11, 401.
- 4. a) Janssen A. J. M.; Klunder A. J. H.; Zwanenburg, B. Tetrahedron 1991, 47, 7409,b) Theil, F.; Ballschuh, S.; Kunath, A.; Schick, H. Tetrahedron: Asymmetry 1991, 2, 1031.
- a) Laumen, K.; Breitgoff, D.; Seemayer, R.; Schneider, M. P. J. Chem. Soc. Chem. Commun. 1989, 148, b) Pederson, R. L.; Liu, K. K.-C.; Rutan, J. F.; Chen, L.; Wong, C.-H. J. Org. Chem. 1990, 55, 4897, c) Chen, C.-S.; Liu, Y.-C.; Marsella, M. J. Chem. Soc. Perkin Trans. I 1990, 2559, d) Goergens, U.; Schneider, M. P. J. Chem. Soc. Chem. Commun. 1991, 1064, e) Goergens, U.; Schneider, M. P. J. Chem. Soc. Chem. Commun. 1991, 1064, e) Goergens, U.; Schneider, M. P. J. Chem. Commun. 1991, 1066, f) Kim, M.-J.; Choi, Y. K. J. Org. Chem. 1992, 57, 1605.
- 6. Nelson, W. L.; Wennerstrom, J. E.; Sankar, S. R. J. Org. Chem. 1977, 42, 1006.
- a) Bevinakatti, H. S.; Banerji, A. A. J. Org. Chem. 1991, 56, 5372, b) Ader, U.; Schneider, M. P. Tetrahedron: Asymmetry 1992, 3, 521.
- 8. Bianchi, D.; Bosetti, A.; Cesti, P.; Golini, P. Tetrahedron Lett. 1992, 33, 3231.
- 9. Guo, Z.-W.; Wu, S.-H.; Chen, C.-S., Girdaukas, G.; Sih, C. J. J. Am. Chem. Soc. 1990, 112, 4942.
- 10. The E values were determined according to: Chen, C.-S; Fujimoto, Y.; Girdaukas, G.; Sih, C. J. J. Am. Chem. Soc. 1982, 104, 7294.
- 11. Kazlauskas, R. J.; Weissfloch, A. N. E.; Rappaport, A. T.; Cuccia, L. A. J. Org. Chem. 1991, 56, 2656.

(Received in Germany 7 September 1992)